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Abstract-Numerical solutions for heat transfer and simultaneous development of the parabolic 
velocity profile in circular tubes are presented for the cases of constant wall heat flux and constant 
wall temperature. The work is a refinement of earlier work of Kays to include the radial component 
of velocity in the entrance region. The radial component is obtained from Langhaar’s approximate 
profile and the continuity equation. The results show that the effect of the radial velocity is to cause 
a significant decrease in the calculated local Nusselt number in the entrance region from that obtained 

by Kays. 

NOMENCLATURR 

specific heat ; 
modified Bessel function of order n; 
thermal conductivity; 
mass flow rate; 
local Nusselt number; 
Prandtl number; 
wall heat flux; 
ratio of radial distance to tube radius; 
tube radius; 
Reynolds number based on tube radius; 
temperature; 
dimensionless fluid temperature for a 
constant wall heat fiux; 
~mensionless fluid temperature for a 
constant wall temperature; 
ratio of axial velocity component to 
mean velocity; 
ratio of radial velocity component to 
mean velocity; 
ratio of axial distance to tube radius; 
function defined in equation (2). 

Subscripts 
4 bulk mean ; 
0, tube inlet ; 
w. tube wall. 

* Presently with E. I. Du Pont de Nemours and 
Company, Wilmington, Delaware. 

INTRODUCTION 

THE PROBLEM to be considered in this paper is 
the simultaneous development of velocity and 
temperature profiles for a Newtonian fluid in 
laminar flow in a circular tube. The main objec- 
tive here is to apply the axial velocity component 
obtained for the entrance length by Langhaar 
[l] and a radial component obtained from 
Langhaar’s profile and the continuity equation, 
for the purpose of investigating the effect of the 
radial velocity component and to present this 
velocity description as a useful one for the study 
of entrance length processes in general. In this 
report numerical solutions are presented for a 
constant wall heat flux and a constant wall 
temperature. 

Kays [2], in the study of entrance heat transfer, 
and Bosworth and Ward [3], studying mass 
transfer in the entrance length, have used 
Langhaar’s velocity data and neglected the 
radial velocity component to obtain a solution 
of the governing transport equations by a 
finite-difference method. According to boundary 
layer theory the radial convective term in the 
transport equations is not negligible, and one 
might expect significant errors, at least very near 
the inlet, if it is taken to be zero. 

Other methods employed in entrance studies 
include series expansion and integral techniques, 
neither of which is readily applicable in general 
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to more complicated processes such as those 
involving homogeneous chemical reaction and 
many others of practical significance. 

Recently Heaton, Reynolds and Kays [4] 
employed an extension of Langhaar’s technique 
to obtain analytically a solution for heat transfer 
in the entrance length with constant wall heat 
flux for laminar flow in concentric annuli and 
circular tubes. AIthough the method is not 
generally appli~ble, it provides a convenient 
source of data for cases involving a constant wall 
flux. The theoretical and experimental results of 
Heaton, Reynolds and Kays are compared in 
this report with the theoretical results of this 
work. 

FLOW DEVELOPmNT IN CIRCULAR TUBES 

Langhaar [l] obtained an approximate solu- 
tion for the axial velocity component in the 
entrance region of a circular tube by linearizing 
the boundary-layer equation. The resulting 
solution is 

* = lo@) - HOW) 

1203) 
(1) 

where 10 and Is are modified Bessel functions of 
orders zero and two respectively, and p is a 
function of x/&r defined by 

where 

x/Rer = 7 &9./-V) dB 
B 

(2) 

g(/s) = A(2Ml - PZ) 

f(P) = [410 12 - (lo - 1)s - 21;1/21; 

The argument of the modsed Bessel functions 
is f3. 

To meet the objectives of this report an ex- 
pression for the radial velocity component was 
conveniently obtained from equation (1) and the 
continuity equation. The continuity equation in 
cylindrical coordinates is 

Thus 

is 1 dP 
ru dr dx 

0 

(3) 
From equation (2) 

dB _ I 1 
dx --I 1 Rey go’ (4) 

From equations (I), (3) and (4) there results for 
the radial velocity component 

u Rer = ~2g(/Qf’@) 

-i[‘lo_“3”] 

2 

(p) _I~~ _2y!y (5) 

where the argument of the modified Bessel 
functions is /3 unless otherwise indicated. It 
might be noted that the computation of u from 
equation (5) does not constitute a major increase 
in time and labor since g(~), f’(p), 10, Ii and Ia 
are all involved in the computation of U. 

HEAT TRANSFER IN THE ENTRANCE 
REGION 

The heat-transfer processes under investiga- 
tion are governed by the boun~ry-layer energy 
equation which may be written in cylindrical 
coordinates as 

aT i3T 1 
‘ax+ VT r= Re,Pr 89 

pi”“+; ;) (6) 

where the velocity components u and v are given 
by equations (1) and (5) respectiveiy. In fully 
developed flow v = 0, and u is independent of 
axial distance, in which case the local mean 
temperature and local Nusselt number depend 
only on (x/Re,. &)-the well-known Graetz 
problem. In the entrance region, however, u 
depends not only on radial position but also on 
xlRe, or (x/Re,. Pr)Pr. Tn addition, the trans- 
verse velocity component, v, is given in equation 
(5) as the product of Re, and a function of radial 
position and (x/Re,-Pr)Pr. Thus, if the axial 
variable is taken as x/(Re,- Pr, the Prandtl number 
is a parameter. 

In the following paragraphs numerical solu- 
tions of the finite difference form of equation (6) 
are presented for Pr = O-7. Solutions were 
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obtained on the IBM 7094 digital computer for 
wall conditions of constant temperature and 
constant heat flux using thirty equally spaced 
radial stations with an increment size in x/Rs Pr 
of OWl very near the entrance and 0.01 farther 
downstream. Simpson’s rule for integration was 
employed in integrations to evaluate bulk mean 
temperatures. In the computation of local 
Nusselt numbers, temperature gradients at the 
wall were evaluated by means of a three-point 
differentiation formula. 

The effect of this substitution on equation (6) is 
simply the replacing of T by T’. 

The bulk mean temperature, T& is given by 

Ti = 2 j uT’r dr (8) 
0 

Also from an over-all heat balance up to any 
point x, Ti is given by 

For an indication of the accuracy of the 
numerical solutions, some calculations were 
carried out using forty radial stations and an 
axial increment size of 0*0005. Agreement of 
the average temperatures and local Nusselt 
numbers thus obtained with those obtained 
using the increment sizes above was within two 
per cent near the inlet and within one per cent 
over the major portion of the entrance length. 

2x 
T; = - 

Rer Pr (9) 

Constant wall heat jlux 
For a constant wall heat flux it is convenient 

to introduce into equation (6) a dimensionless 
temperature, T’, defined as 

independent of the velocity distribution. Equa- 
tion (9) therefore provides a check on the accu- 
racy of the numerical solution of equation (6). 
According to equation (9), values of TL com- 
puted from equation (8) should lie on a straight 
line of slope two when plotted versus xlRer Pr. 

Figure 1 shows the axial variation of Ti 
resulting from equations (8) and (9) and the 
numerical solution of equation (6) for Pr = 0.7. 
As shown on the graph, values of TL from equa- 
tion (8) agree with equation (9) when the trans- 
verse velocity component from equation (5) 
is included, but show a deviation of about 
- 6 per cent at the end of the hydrodynamic 
entrance length when u is taken to be zero. 

In terms of dimensionless quantities the local 
Nusselt number is defined as 

T’ = qLR (T - To) 
W 

The boundary conditions on T’ are 

at x = 0, T’ = 0 

r = 0, aT’/ar = 0 

r = 1, aT’/i3r = 1 

(7) 

2 
Nu = ~ 

T; - TB 
(10) 

06- ---.---- I 
/ 
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EquaflM (8) , 
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FIG. 1. Axial variation of bulk temperature for constant wall flux and Pr = O-7. 
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Figure 2 shows the local Nusselt number 
resulting from the numerical solutions and 
compares the resuh obtained when the radial 
velocity is retained to those obtained when it is 
neglected. The curve of Fig. 2 for o = 0 gives 
values somewhat different from those presented 
in the original work of Kays [2] since the larger 

[[j!i.J ; !/ 
fLr___ -..- - ____~oo,.--_ . ..__.!_L_L$ 

FIG. 2. Local Nusselt number for constant wall flux and 
Pr = 0.7. 

number of radial increments used in this work 
has improved the accuracy considerably. The 
results show that the local Nusselt number near 
the entrance is overestimated by about 6 per 
cent if the radial velocity is neglected. The fact 
that the local Nusselt number is lower when the 
radial velocity is not neglected seems at fjrst to 
be contradictory to reason. This phenomenon, 
however, is readily explained as being the result 
of the fact that the flowing fluid is not actually 
being heated by the flux of heat specified at the 
wall when ZI is taken to be zero. This was clearly 
shown in Fig. 1. Thus if qw were replaced in 
equation (10) by the actually calculated local 
rate of heating given by mCJdTB/dx), the result- 
ing Nusselt number for u = 0 would be, as ex- 
pected, below that resulting when u f 0. In the 
region of Fig. 1 near the entrance where the radial 
velocity is not negligible, d7’~/d(x/ReJ’r) < 2. 
Through this region an appreciable error 
results in the local Nussett number. The error in 
the local Nusselt number becomes negligible 
before the end of the entrance length as the error 
in TL approaches a constant value. 

Figure 3 compares the results obtained from 
this work for z: f 0 with theoretical and experi- 
mental results of I-Ieaton, Reynolds and Kays [4]. 

I 
6 
I 

FIG. 3. Theoteticai curves and experimental data for iocai Nusselt number for constant wall flux and Pr = 0.7. 
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Their theoretical results were obtained by an 
integral method which accounts for the effect 
of the radial velocity on the average. The 
theoretical curves are in very good agreement, 
and the results of this work give slightly better 
agreement with measured values, particularly 
near the inlet. 

Constant wall temperature 
In this case a d~ensionless temperature, T*, 

to be introduced into equation (6) is defined by 

T- To 
T*=T (11) 

w- To 

The boundary conditions then are 

x = 0, T* = 0 

EVELOPING 

r=O,7= 
aT* o 

Y = 1, T* = 1 

The local Nusselt number is given by 
4x 
Re, Pr 

N”= 
2(aT*/ar)r-l 

1 -T; (12) 

where 

T; = 2 i U’T*rdr 
0 

The Nusselt number resulting from the cal- 
culations under these conditions is shown in 
Fig. 4. When the radial velocity is neglected the 
same qualitative effect is found as in the previous 
case of constant wall heat flux-that of over- 
estimating the local Nusselt number. This again 
is due to the fact that the heat flux at the wall 
characterized by (dT*/dr)+l in equation (12) is 
considerably larger than the actual local rate of 
heating due to the fact that the continuity equa- 
tion is not satisfied locally. The curves of Fig. 4 
show that the reiative error in the local Nusselt 
number near the inlet may be larger than 15 per 
cent when v is taken to be zero. 

CONCLUSIONS 

The velocity profile of Langhaar together with 
a radial component obtained through the con- 
tinuity equation afford a convenient and suit- 
ably accurate description of the entrance velocity 

FIG. 4. Local Nusselt number for constant wall tempera- 
ture and Pr = 0.7. 

field. This description is applicable to laminar 
heat- and mess-transport processes in the en- 
trance region in general when the velocity field 
can be assumed to be independent of the trans- 
fer processes occurring. 

This work has shown that significant errors 
may result when the radial component of velocity 
is neglected and has thus provided a more 
accurate prediction of the entrance length heat 
transfer in a tube for a Prandtl number of 0.7 
than has previously been reported. 
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Zusammenfassung-FCir die Fiille konstanter Warmestromdichte an der Wand und konstanter 
Wandtemperatur werden numerische Losungen ftir den Wlrmetibergang und die gleichzeitige 
Ausbildung des parabolischen Geschwindigkeitsprofites in Rohren mit Kreisquerschnitt angegeben. 
Diese A&it ist eine Verfeineru~ der frtiheren Arbeit von Kays, indem die radiate Ges~hwindigkeits- 
komponente im Bereich des Einiaufs mit erfasst wird. Die Radialkumponente erh&lt mm iiber das 
Nlherungsprofil Langhaars und die Kontinuitatsgleichung. Die Ergebnisse zeigen, dass der Einfluss 
der Radialgeschwindigkeit eine bedeutende Verringerung der hier berechneten, lokalen Nusseltzahl 

im Einlaufsbereich gegentiber der von Kays ermittelten verursacht. 

AHEIOTN~WK-II~~BO~RTCEI sxfeneame pemernm saaawi 0 Tennoo6hieKe I 0~KospeiMemoiu 

pa3BHTHH IIapa6OJW4eCKOl'O IIpO#MJIR CKOPOCTM B Tpy6ali KpylVIOrO CeYeHMFI J&WI CJlyYaeB 

IIOCTORHHOFO TeIIJIOBOI'O IIOTOKa OT CTeHKII M IIOCTORHHOik TeMtIepaTyphI CTeHKM. AaHHafl 

pa6oTa IlpefiCTaBJIReT co60& pa3BHTEe Bonee paHHe# pa6orbl KellCa TaK, =iTO6hl y=ieCTb L1 

pa~~a~bHy~ COCTaB~~~~y~ CKOpOCTvI Ha BXO&HOM yWCTKe. 3Ta pa,QfaJlbHaR: COCTaBJfS- 

IOIQaX IIOZIyYeHa II0 npn6sHmeHHoMy npO#UIHl jIaHrXaapa M ypaBHeHHPJ Hepa3phIBHOCTlL 

Pe3yJIbTaTId pa6oTbI JlOKa3bIBaK)T, 'ITO pagkfanbKaR cKopocTb AaeT 6onee aHawTenbKoe 

yMeHbIIIeHMe pacseTnor0 JIOKaJIbHOrO qI3caa HyccenbTa Ha BXO~II~M yqacTIre, YeM 3T0 
IIonyYeHo ECeMcoM . 


