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Abstract—Numerical solutions for heat transfer and simultaneous development of the parabolic

velocity profile in circular tubes are presented for the cases of constant wall heat flux and constant

wall temperature. The work is a refinement of earlier work of Kays to include the radial component

of velocity in the entrance region. The radial component is obtained from Langhaar’s approximate

profile and the continuity equation. The results show that the effect of the radial velocity is to cause

a significant decrease in the calculated local Nusselt number in the entrance region from that obtained
by Kays.

NOMENCLATURE

Cp, specific heat;

I,, modified Bessel function of order »;

k, thermal conductivity;

m, mass flow rate;

Nu, local Nusselt number;

Pr, Prandt]l number;

guw, wall heat flux;

7, ratio of radial distance to tube radius;

R,  tube radius;

Rey, Reynolds number based on tube radius;

T, temperature;

T’, dimensionless fluid temperature for a
constant wall heat flux;

T*, dimensionless fluid temperature for a
constant wall temperature;

u, ratio of axial velocity component to
mean velocity;

v, ratio of radial velocity component to
mean velocity;

X, ratio of axial distance to tube radius;

8, function defined in equation (2).

Subscripts
B, bulk mean;
0, tube inlet;
w, tube wall.

* Presently with E. I. Du Pont de Nemours and
Company, Wilmington, Delaware.

INTRODUCTION

THE PROBLEM to be considered in this paper is
the simultaneous development of velocity and
temperature profiles for a Newtonian fluid in
laminar flow in a circular tube. The main objec-
tive here is to apply the axial velocity component
obtained for the entrance length by Langhaar
[1] and a radial component obtained from
Langhaar’s profile and the continuity equation,
for the purpose of investigating the effect of the
radial velocity component and to present this
velocity description as a useful one for the study
of entrance length processes in general. In this
report numerical solutions are presented for a
constant wall heat flux and a constant wall
temperature.

Kays [2], in the study of entrance heat transfer,
and Bosworth and Ward (3], studying mass
transfer in the entrance length, have used
Langhaar’s velocity data and neglected the
radial velocity component to obtain a solution
of the governing transport equations by a
finite-difference method. According to boundary
layer theory the radial convective term in the
transport equations is not negligible, and one
might expect significant errors, at least very near
the inlet, if it is taken to be zero.

Other methods employed in entrance studies
include series expansion and integral techniques,
neither of which is readily applicable in general
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to more complicated processes such as those
involving homogeneous chemical reaction and
many others of practical significance.

Recently Heaton, Reynolds and Kays [4]
employed an extension of Langhaar’s technique
to obtain analytically a solution for heat transfer
in the entrance length with constant wall heat
flux for laminar flow in concentric annuli and
circular tubes. Although the method is not
generally applicable, it provides a convenient
source of data for cases involving a constant wall
flux. The theoretical and experimental results of
Heaton, Reynolds and Kays are compared in
this report with the theoretical results of this
work.

FLOW DEVELOPMENT IN CIRCULAR TUBES

Langhaar [1] obtained an approximate solu-
tion for the axial velocity component in the
entrance region of a circular tube by linearizing
the boundary-layer equation. The resulting
solution is

y — 1oB) — To(Br)
Ix(B)
where Iy and > are modified Bessel functions of

orders zero and two respectively, and B is a
function of x/Rey defined by

M

x/Rey = ‘Zg(ﬁ)f'(ﬁ) dB @)

where
g(B) = L(2BhL — B%)
f(B) = [4lo Iz — (Io — 1)2 — 21?212

1B = df(p)/dB

The argument of the modified Bessel functions
is B.

To meet the objectives of this report an ex-
pression for the radial velocity component was
conveniently obtained from equation (1) and the
continuity equation. The continuity equation in
cylindrical coordinates is

ou 1 o(rv)

—~ 42X 0
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Thus ,
== o= 5o
From equation (2) v

v ~mlwrm O

From equations (1), (3) and (4) there results for
the radial velocity component

T L s
(=335 o

where the argument of the modified Bessel
functions is B unless otherwise indicated. It
might be noted that the computation of v from
equation (5) does not constitute a major increase
in time and labor since g(8), f'(8), Io, I1 and I»
are all involved in the computation of u.

HEAT TRANSFER IN THE ENTRANCE
REGION
The heat-transfer processes under investiga-
tion are governed by the boundary-layer energy
equation which may be written in cylindrical

coordinates as
oT er 1 jerr 1eér 6
Uox UE;MRefPr(arz r Br) ©
where the velocity components « and v are given
by equations (1) and (5) respectively. In fully
developed flow v = 0, and u is independent of
axial distance, in which case the local mean
temperature and local Nusselt number depend
only on (x/Re,Pr)—the well-known Graetz
problem. In the entrance region, however, u
depends not only on radial position but also on
x/Reyr or (x/Rey Pr)Pr. In addition, the trans-
verse velocity component, v, is given in equation
(5) as the product of Re, and a function of radial
position and (x/Rer Pr)Pr. Thus, if the axial
variable is taken as x/(Rer Pr, the Prandtl number
is a parameter.
In the following paragraphs numerical solu-
tions of the finite difference form of equation (6)
are presented for Pr = 0-7. Solutions were
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obtained on the IBM 7094 digital computer for
wall conditions of constant temperature and
constant heat flux using thirty equally spaced
radial stations with an increment size in x/Re, Pr
of 0-001 very near the entrance and 0-01 farther
downstream. Simpson’s rule for integration was
employed in integrations to evaluate bulk mean
temperatures. In the computation of local
Nusselt numbers, temperature gradients at the
wall were evaluated by means of a three-point
differentiation formula.

For an indication of the accuracy of the
numerical solutions, some calculations were
carried out using forty radial stations and an
axial increment size of 0-0005. Agreement of
the average temperatures and local Nusselt
numbers thus obtained with those obtained
using the increment sizes above was within two
per cent near the inlet and within one per cent
over the major portion of the entrance length.

Constant wall heat flux

For a constant wall heat flux it is convenient
to introduce into equation (6) a dimensionless
temperature, T, defined as
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The effect of this substitution on equation (6) is
simply the replacing of T by T".

The bulk mean temperature, T, is given by

Tp=2 {uT'rdr

Oy

®

Also from an over-all heat balance up to any
point x, T is given by

, 2x
Tp= Re, Pr ©)
independent of the velocity distribution. Equa-
tion (9) therefore provides a check on the accu-
racy of the numerical solution of equation (6).
According to equation (9), values of T, com-
puted from equation (8) should lie on a straight
line of slope two when plotted versus x/Rey Pr.

Figure 1 shows the axial variation of Ty
resulting from equations (8) and (9) and the
numerical solution of equation (6) for Pr = 0-7.
As shown on the graph, values of T, from equa-
tion (8) agree with equation (9) when the trans-
verse velocity component from equation (5)
is included, but show a deviation of about

T — Kk (T — To) "n = 6 per cent at the end of the hydrodynamic
quwR entrance length when v is taken to be zero.
The boundary conditions on 7" are In terms of dimensionless quantities the local
atx=0.T =0 Nusselt number is defined as
r=20,0T"jer=0 2
! Nu=——— (10)
r=108T"er=1 T,— Ty
10 v T T T T T T T T T T
08 L =
+ Equation (9) e g
0§ - =
A
e L 7
Equation (8) - -
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Fic. 1. Axial variation of bulk temperature for constant wall flux and Pr = 0-7.
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Figure 2 shows the local Nusselt number
resulting from the numerical solutions and
compares the result obtained when the radial
velocity is retained to those obtained when it is
neglected. The curve of Fig. 2 for v = 0 gives
values somewhat different from those presented
in the original work of Kays [2] since the larger

and R. A. SCHMITZ

number of radial increments used in this work
has improved the accuracy considerably. The
results show that the local Nusselt number near
the entrance is overestimated by about 6 per
cent if the radial velocity is neglected. The fact
that the local Nusselt number is lower when the
radial velocity is not neglected seems at first to
be contradictory to reason. This phenomenon,
however, is readily explained as being the result

: Doy | 1. of the fact that the flowing fluid is not actually
ol I | | being heated by the flux of heat specified at the
\ ‘ : " | wall when v is taken to be zero. This was clearly
Ny | shown in Fig. 1. Thus if g, were replaced in
P DEVELOPING 3
oI L, PO Ty =1~ equation {10} by the actually calculated local
N \%\“\’l v#o z i - rate of heating given by mCp(d7's/dx), the result-
i DG 1o | . .. ing Nusselt number for v = 0 would be, as ex-
el ! ~ ' ‘ i v X
. \\ o : ' | pected, below that resulting when v # 0. In the
T~ ™ © i region of Fig. 1 near the entrance where the radial
B "”?ESVEL%’} +—  velocity is not negligible, dTs/d(x/Re,Pr) < 2.
i i Through this region an appreciable error
ah- P I ; = results in the local Nusselt number. The error in
| o _‘ { | the local Nusselt number becomes negligible
Qt i } | . | | before the end of the entrance length as the error
5601 o gor T ot in T, approaches a constant value.
iff;s’,’ Figure 3 compares the results obtained from
Fic. 2. Local Nusselt number for constant wall flux and  this work for v # 0 with theoretical and experi-
Pr =07 mental results of Heaton, Reynolds and Kays [4].
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Fia. 3. Theoretical curves and experimental data for local Nusselt number for constant wall flux and Pr = (7.
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Their theoretical results were obtained by an
integral method which accounts for the effect
of the radial velocity on the average. The
theoretical curves are in very good agreement,
and the results of this work give slightly better
agreement with measured values, particularly
near the inlet,

Constant wall temperature
In this case a dimensionless temperature, T¥,
to be introduced into equation (6) is defined by

T—To
[ Jp—
T* = T $9))
The boundary conditions then are
x=0,T*=0
ar*
r = 0, ’5’— =0
=1,T*=
The local Nusselt number is given by
2(0T*[6r)r=
N = 20100 12
1-T;

where
1
Tp=2[u T*rdr
0

The Nusselt number resulting from the cal-
culations under these conditions is shown in
Fig. 4. When the radial velocity is neglected the
same qualitative effect is found as in the previous
case of constant wall heat flux—that of over-
estimating the local Nusselt number. This again
is due to the fact that the heat flux at the wall
characterized by (dT*/dr),~1 in equation (12) is
considerably larger than the actual local rate of
heating due to the fact that the continuity equa-
tion is not satisfied locally. The curves of Fig. 4
show that the relative error in the local Nusselt
number near the inlet may be larger than 15 per
cent when v is taken to be zero.

CONCLUSIONS
The velocity profile of Langhaar together with
a radial component obtained through the con-
tinuity equation afford a convenient and suit-
ably accurate description of the entrance velocity
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FiG. 4. Local Nusselt number for constant wall tempera~
ture and Pr = 0-7.

field. This description is applicable to laminar
heat- and mass-transport processes in the en-
trance region in general when the velocity field
can be assumed to be independent of the trans-
fer processes occurring.

This work has shown that significant errors
may result when the radial component of velocity
is neglected and has thus provided a more
accurate prediction of the entrance length heat
transfer in a tube for a Prandtl number of 0-7
than has previously been reported.
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Zusammenfassung—Fiir die Fille konstanter Wirmestromdichte an der Wand und konstanter
Wandtemperatur werden numerische Losungen fir den Wirmeibergang und die gleichzeitige
Ausbildung des parabolischen Geschwindigkeitsprofiles in Rohren mit Kreisquerschnitt angegeben.
Diese Arbeit ist eine Verfeinerung der fritheren Arbeit von Kays, indem die radiale Geschwindigkeits-
komponente im Bereich des Einlaufs mit erfasst wird. Die Radialkomponente erhilt man iiber das
Niherungsprofil Langhaars und die Kontinuitdtsgleichung. Die Ergebnisse zeigen, dass der Einfluss
der Radialgeschwindigkeit eine bedeutende Verringzrung der hier bzrechneten, lokalen Nusseltzah!
im Einlaufsbereich gegeniiber der von Kays ermittelten verursacht.

AnpoTamma—IIpuBoRATCA YMCIEHHEE DeIeHMA 3aladl O TenIo00MeHe W OJHOBPEMEHHOM
PasBUTHH NapaboaMyecKoro MPOPUIA CKOPOCTH B TPyGAaxX KpYTJoro CeueHHA A CIy4aes
HOCTOSHHOT'O TEINIOBOrO MOTOKA OT CTEHKH M MOCTOAHHON TeMmeparypH creHkM. JlaHHas
pabora mpexcrarnaer cobolt pasmuTue Gomee pamuelt paforsl Heuca rtak, urolN yuecTs 4
PAUANBHYI0 COCTABJIAUIYI0 CKOPOCTH HA BXOZHOM yvyacTke, JTa pPajuaipHAdA COCTABJIA-
oUas [oJdyYeHa o npubamkeRHoMy npoduiie JIaHrxaapa ¥ ypaBHEHHIO HeDABPHBHOCTHU.
Pesyabraril pafoTH ITOKA3HBAWT, YTO pafgMajibHAsA CKOPOCTb JaerT Gollee BHAYMTEIILHO®
yMeHbIIEHMe pACcYeTHOr0 JoxanesOoro uucia Hyeccemsra Ha BXOTHOM ydacTke, ¥MeM 3TO
noayueso Hemcom.



